Answer:
254
Explanation:
use the formula "final Velocity- initial velocity / time = acceleration"
so "X - 14 /4 = 60"
60 x 4 = X - 14
240 +14 = X
X = 254
I think the answer is Dust. Moons and stars definitely don't seem likely and dark particles, I am not even sure what those are. But I have seen rings on other planets before. Hope this helps. :)
Answer:
I believe the answer is B.
Explanation:
Newton's First Law of Gravity states, "The greater the weight (or mass) of an object, the more inertia it has. Heavy objects are harder to move than light ones because they have more inertia.
"
Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.
To solve this problem we will apply the normal distribution, with which we will obtain the probability that the given event will occur. Concepts such as the mean and standard deviation will be present throughout the solution of the problem. Increasing or decreasing the average would change the location or center point of the curve. The change in the standard deviation would lead to the change in the dispersion of the data. As the standard deviation increases, the curve would become flatter.
Let X be the output voltage of power supply
X∼N 
A
The lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively





Hence probability that a power supply selected at random will conform to the specifications on voltage is 0.9876