A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.
If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.
Answer:
3331.5 kg
Explanation:
Given:
Spring constant of the spring (k) = 24200 N/m
Frequency of oscillation (f) = 0.429 Hz
Let the mass be 'm' kg.
Now, we know that, a spring-mass system undergoes Simple Harmonic Motion (SHM). The frequency of oscillation of SHM is given as:

Rewrite the above equation in terms of 'm'. This gives,

Now, plug in the given values and solve for 'm'. This gives,

Therefore, the mass of the truck is 3331.5 kg.
Answer:
The answer is below
Explanation:
Let vₐ be the speed of airplane = 135 mph, vₙ be the speed of the wind = 70 mph and vₐₙ be the speed of the airplane relative to the wind.
The distance (d) = 135 miles, Δt = 1 hour, vₐₙ = 135 miles / 1 hour = 135 mph
vₐ = vₙ + vₐₙ
vₐ = vₐₙ
Therefore, vₐ, vₐₙ, vₙ can be represented by an isosceles triangle since vₐ = vₐₙ.
The direction of the wind θ is:
sin(θ / 2) = vₙ / 2vₐ
sin(θ / 2) = 70/ (2*135)
sin(θ / 2) = 0.2593
θ / 2 = sin⁻¹(0.2593) = 15
θ = 30⁰
2α = 180° - 30°
2α = 150°
α = 75°
a) The direction of the wind is 75° in the south east direction while the airplane is heading 30° in the north east direction.
Answer:
t = 16.94 s
Explanation:
t is the time passes before police catch the speeder
speed of speeder Vo = V = 23.3 m/s
T = t
Police Info
Vo = 0 m/s
a = 2.75 m/s^2
t = t
Now,
displacement of the police car = displacement of the speeder.
x_{police} = Vo *t + 1/2 at^2
since Vo = 0
x police = 1/2 at^2
x police = 1/2 (2.75)(t)^2
Now the displacement of speeder is
x_{speeder} = Vt
x_{speeder} = 23.3 t
x_{speeder} = x_{police}
23.3 t = 1/2 * 2.75 t^2
23.3 t = 1.375 t^2
t = 23.3\1.375
t = 16.94
t = 16.94 s
Index of refraction of a substance =
(speed of light in vacuum) / (speed of light in the substance)
Index in quartz = (2.9979 x 10⁸ m/s) / (2.0567 x 10⁸ m/s)
<em>Index = 1.4576 </em> (no units)