The answer to the statement is true because the day is of the logical proportion it has to be time.
Answer:
I'm sorry I don't have a answer but I like your pfp
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
The answers are options B,D and E
Explanation:
B) The particles in the liquid are slowly overcoming the forces of attraction and spreading out due to the thermal energy they are absorbing. This makes the liquid less dense as it slowly changes into a gas after reaching its boiling point.
D) The particles start absorbing the energy form the surroundings as latent heat of evaporation. They need this energy to overcome the strong forces of attraction between particles to change into the gaseous state
E) The particles have spaced out due to the thermal energy absorbed, making the liquid lighter and it rises upwards.
Answer:
This motion is known as Brownian motion.
Explanation:
This motion is known as Brownian motion.