Answer:
False.
Explanation:
The statement shown in the question above is false and this can be confirmed by Newton's law on universal gravitation. According to Newton, the gravitational force exerted on any body is proportional to its weight, but the distance that the object travels when falling is disproportionate. In addition, if the force resulting from the weight of the object and its displacement has an angle of 0º, the weight force of that object will provide an increase in kinetic energy.
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
Do it as if you are writing a yes or no statement but have edge more towards the no side.
I got -3.6 m/s but I had to do conservation of momentum for this question. Which involves Newtons third law but with simply that law I do not know how to complete this question. If you would like me to post my work I will though! Sorry