Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
Answer:
a. 20m/s
b.50N
c. Turkey has a larger mass than the ball. Neglible final acceleration and therefore remains stationery.
Explanation:
a. Given the force as 50N, times as 0.2seconds and the weight of the ball as 0.5 kg, it's final velocity can be calculated as:

Hence, the velocity of the ball after the kick is 20m/s
b.The force felt by the turkey:
#Applying Newton's 3rd Law of motion, opposite and equal reaction:
-The turkey felt a force of 50N but in the opposite direction to the same force felt by the ball.
c. Using the law of momentum conservation:
-Due to ther external forces exerted on the turkey, it remains stationery.
-The turkey has a larger mass than the ball. It will therefore have a negligible acceleration if any and thus remains stationery.
-Momentum is not conserved due to these external forces.
Answer:

Explanation:
<u>Tangent and Angular Velocities</u>
In the uniform circular motion, an object describes the same angles in the same times. If
is the angle formed by the trajectory of the object in a time t, then its angular velocity is

if
is expressed in radians and t in seconds the units of w is rad/s. If the circular motion is uniform, the object forms an angle
in 2t, or
in 3t, etc. Thus the angular velocity is constant.
The magnitude of the tangent or linear velocity is computed as the ratio between the arc length and the time taken to travel that distance:

Replacing the formula for w, we have

Answer:
895522 times faster.
Explanation:
From the question given above, the following data were obtained:
Speed of sound in air (v) = 335 m/s
Speed of light in air (c) = 3×10⁸ m/s
How many times faster =.?
To obtain how many times faster light travels in air than sound, do the following
c : v => 3×10⁸ : 335
c/v = 3×10⁸ / 335
c/v = 895522
Cross multiply
c = 895522 × v
From the illustrations made above, we can see that the speed of the light in air (c) is 895522 times the speed of sound in air.
Thus, light travels 895522 times faster than sound in air.