Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
Answer:
changing the direction in which a force is exerted
Answer:
1.5 km/s²
Explanation:
Given that:
a car starts from rest; it means the initial velocity (u) = 0 km/hr = 0 m/s
after time (t) = 20 seconds
the final velocity = 108 km/hr = 30 m/s
The acceleration (a) of the car can be determined by using the formula:



a = 1.5 km/s²
Answer:
<em>600N.</em>
Explanation:
From the question, we are to calculate the net force acting on the car.
According to Newton's second law of motion:
F = ma
m is the mass of the car
a is the acceleration = change in velocity/Time
a = v-u/t
F = m(v-u)/t
v is the final velocity = 30m/s
u is the initial velocity = 20m/s
t is the time = 5secs
m = 300kg
Get the net force:
Recall that: F = m(v-u)/t
F = 300(30-20)/5
F = 60(30-20)
F = 60(10)
<em>F = 600N</em>
<em>Hence the net force acting on the car is 600N.</em>
<em></em>
<em></em>