1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
6

A solid, glowing-hot object will emit light over the full range of wavelengths resulting in a spectrum. If a diffuse and relativ

ely cool cloud of gas is located between the glowing, hot object and an observer, the observer will detect an spectrum coming out of the cloud. Another type of spectrum is given off by a neon sign which is a tube of gas whose electrons are excited by an electric current. The mostly red light given off by the sign is in the form of an spectrum.
Physics
1 answer:
geniusboy [140]3 years ago
3 0

Answer:

Absorption Spectrum

Explanation:

The hot, dense source emits high energy photons of all wavelengths. Some of these photons are absorbed by electrons of cloud to excite them to a higher energy level which appear as dark lines in the spectra and we get Absorption Spectrum.

You might be interested in
True or False: A chemical reaction always happens when two substances are combined. (please help fast this is a test)
Makovka662 [10]

Answer:

no not always sometimes they react at all so false I hope I helped :)

6 0
3 years ago
Read 2 more answers
The electric potential at the origin of an xy-coordinate system is 40 V. A -8.0-μC charge is brought from x = +∞ to that point.
vredina [299]

Answer:

-320 μJ.

Explanation:

Consider a point with an electrical charge of q. Assume that V is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:

\text{Potential Energy} = q \cdot V.

Keep in mind that since both q and V might not be positive, the size of the electrical potential energy might not be positive, either.

For this point charge,

  • q = \rm -8.0\; \mu C; (that's -8.0 microjoules, which equals to \rm -8.0\times 10^{-6}\; J)
  • V = \rm 40\; V.

Hence its electrical potential energy:

\text{Potential Energy} = q\cdot V = \rm (-8.0\; \mu C) \times 40\; V = -320\; \mu J.

Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this \rm -8.0\; \mu C negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.

7 0
3 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
If one of two interacting charges is doubled, the force between the charges will _____________.
malfutka [58]

If one of two interacting charges is doubled, the force between the charges will double.

Explanation:

The force between two charges is given by Coulomb's law

F=\frac{k q1 q2}{r^{2}}

K=constant= 9 x 10⁹ N m²/C²

q1= charge on first particle

q2= charge on second particle

r= distance between the two charges

Now if the first charge is doubled,

we get F'=\frac{k (2q1) q2}{r^{2}}

F'= 2 F

Thus the force gets doubled.

4 0
3 years ago
Find the direction and magnitude of Ftot, the total force exerted on her by the others, given that the magnitudes F1 and F2 are
Mars2501 [29]

Answer:

 θ = 36°

Explanation:

given,

F₁ = 22.8 N

F₂ = 16.6 N

magnitude of force = ?

direction of force = ?

F = \sqrt{F_1^2 + F_2^2}

F = \sqrt{22.8^2 + 16.6^2}

F = \sqrt{795.4}

      F = 28.20 N

direction

\theta = tan^{-1}(\dfrac{F_2}{F_1})

\theta = tan^{-1}(\dfrac{16.6}{22.8})

\theta = tan^{-1}(0.728)

       θ = 36°

5 0
3 years ago
Other questions:
  • What causes two distinct pressure zones between the equator and the poles?
    14·2 answers
  • Identify four processes in which matter and energy cycle earth
    6·1 answer
  • Which best describes the beginning of the Big Bang Theory?
    13·2 answers
  • Light in vacuum travels at a speed of 3.00 x 10^8 m ^-1 s^-1 on average earth is 93,000,000 miles from the sun how many minutes
    5·1 answer
  • Mrs. Davis has asked Kyle to retrieve the compound mixture from the chemical cabinet. Which of the following should Kyle retriev
    5·1 answer
  • A pitcher is in 85° of abduction, holding a 1.4 N baseball at point C, 65 cm from the joint axis at point O • The center of grav
    6·1 answer
  • Express newton pascal joule and watt in fundamental unit​
    10·1 answer
  • Question 13 of 20
    8·2 answers
  • What are the advantages and Disadvantages of using Circuit Breakers Instead of Fuses
    11·2 answers
  • A projectile is launched at an angle of 29 degrees above the horizontal with an initial velocity of 36.6 at an unknown height.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!