<span>A free body diagram is a representation of how the forces that are acting on a point or particle interact. You place your point at the origin and then draw your forces.
</span>
Answer:
a = 120 m/s²
Explanation:
We apply Newton's second law in the x direction:
∑Fₓ = m*a Formula (1)
Known data
Where:
∑Fₓ: Algebraic sum of forces in the x direction
F: Force in Newtons (N)
m: mass (kg)
a: acceleration of the block (m/s²)
F = 1200N
m = 10 kg
Problem development
We replace the known data in formula (1)
1200 = 10*a
a = 1200/10
a = 120 m/s²
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
Answer:
The spark from the primer ignites the gunpowder. Gas converted from the burning powder rapidly expands in the cartridge. The expanding gas forces the bullet out of the cartridge and down the barrel with great speed. The rifling in the barrel causes the bullet to spin as it travels out of the barrel.
Explanation: