An electric current has an associated magnetic field when the flow occurs in. This is also known as magnetic effect of current which has been<span> observed and quantified by </span>Ampere's Law<span>.
</span>Meanwhile, Current is produced in a conductor when it is moved through a magnetic field because the magnetic lines of force are applying a force on the free electrons in the conductor and causing them to move. This process of generating current in a conductor by placing the conductor in a changing magnetic field is called induction<span>.
</span>
Hence, when a electric wire is placed nearby another wire carrying current, due to magnetic effect of current in the wire carrying electric current, current is induced in the wire. Hence the electric pulse and it is known as induction.
Answer:
Given that
m = 5.3 kg
Fx = 2x + 4
We know that work done by force F given as
w= ∫ F. dx
a)
Given that x=1.08 m to x=6.5 m
Fx = 2x + 4
w= ∫ F. dx

![w=\left [x^2+4x \right ]_{1.08}^{6.5}](https://tex.z-dn.net/?f=w%3D%5Cleft%20%5Bx%5E2%2B4x%20%5Cright%20%5D_%7B1.08%7D%5E%7B6.5%7D)

w=62.7 J
b)
We know that potential energy given as

∫ dU = -∫F.dx ( w= ∫ F. dx)
ΔU= -62.7 J
c)
We know that form work power energy theorem
Net work = Change in kinetic energy
W= KE₂ - KE₁
62.7 =KE₂ - (1/2)x 5.3 x 3²
KE₂ = 86.55 J
This is the kinetic energy at 6.5m
Work = (force) x (distance)
Power = (work) / (time)
Knowing force, distance, and time, it looks like
you can calculate both <em>work and power</em>.
But that's not all !
-- <u>Speed</u> = (distance) / (time)
-- <u>Impulse</u> = change in momentum = (force) x (time)