Climax community is the answer i believe
Answer:
A polysaccharide (n) can be formed by linking several monosaccharides through glycosidic linkages.
Explanation:
Polysaccharides are carbohydrates or complex carbohydrates, where monosaccharides join with glucosidic bonds to form a more complex structure that would be the polysaccharide.
An example of a polysaccharide is starch, or glycogen.
Starch is found in many foods such as potatoes or rice, and glycogen is a form of energy reserve of our organism housed in muscles and liver to fulfill locomotion, physical activity, and other activities that consist of glycolysis.
Polysaccharides are degraded in our body by different stages, and several enzymes unlike monosoccharides or disaccharides, since they have more unions and a more complex structure to disarm in our body and thus assimilate it.
Polysaccharides are also part of animal structures, such as insect shells or nutritional sources, among others.
I think this is what you're after:
Cs(g) → Cs^+ + e⁻ ΔHIP = 375.7 kJ mol^-1 [1]
Convert to J and divide by the Avogadro Const to give E in J per photon
E = 375700/6.022×10^23 = 6.239×10^-19 J
Plank relationship E = h×ν E in J ν = frequency (Hz s-1)
Planck constant h = 6.626×10^-34 J s
6.239×10^-19 = (6.626×10^-34)ν
ν = 9.42×10^14 s^-1 (Hz)
IP are usually given in ev Cs 3.894 eV
<span>E = 3.894×1.60×10^-19 = 6.230×10^-19 J per photon </span>
False, atoms can not be created that way
Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:
