Answer:
A. El volumen
B. La densidad.
Explanation:
A derived quantity is defined as one that has to be calculated by using two or more other measurements.
Volume is a derived quantity because it requires one to use different measurements to determine it. For instance, in the case of a cube, the length, width and height of the cube are all needed to calculate volume.
Density is also a derived quantity because it needs both volume and mass for it to be calculated.
Hello,
<span>A car with a mass of 2.0×10^3 kg is traveling at 15m/s. We need to find the momentum of the car. To do so, follow this formula:
p=mv
Where,
p = momentum
m = mass
v = </span>velocity
The cars mass is 2.0E3 and its velocity is 15m/s. Therefore:
p=2.0 x 10^3 *15 or 2000(15)
p=30000
Thus, the cars momentum is 30000 kg m/s
Faith xoxo
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m
Answer:
The cup with 0.5L
Explanation:
To know what amount of water you take into account the specific heat of the water. The specific heat of water is:

Thus, 4186 J of energy are needed to icrease the temperature of 1 kg water in 1°C. Then, more grams of water will need more energy.
You have that one cup has 0.5 L and the other one has 750mL = 0.75L
The second cup of water will need more heat because the amount of water contained in the second cup is greater than in the first cup with 0.5L
Answer:
Kinetic energy can be solved by using the following formula: Kinetic energy = (1/2)*m*v^2
Explanation: