The vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
The given parameters;
- initial horizontal velocity, vₓ = 16 m/s
- initial vertical velocity,

- time interval 1 seconds
The components of the velocity can be horizontal or vertical velocity.
The vertical component of the velocity is affected by acceleration due to gravity while the horizontal component of the velocity is not affected by gravity.
The vertical component of the velocity is calculated as;

The horizontal component of the velocity is constant since it is not affected by gravity.
The horizontal component of the velocity = 16 m/s
Thus, the vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
Learn more here:brainly.com/question/20349275
In the experiment of free fall bob released a bag of mass 1 lb
so here we can say that initial speed of the bag is Zero
time taken by the bag to free fall is given as
t = 1.5 s
also the acceleration of free fall is given as
a = 9.8 m/s^2
now we will use kinematics equation here for finding the distance of free fall




so the bag will fall down by total distance of 11.025 m from its initial released position.
It is false. The effect of freezing is almost the exact opposite