In a force diagram set-up, we name the angle of inclination theta, g as the acceleration due to gravity. In this case, the forces acting on the box going down is the weight itself impeded by the friction between the box and the inclined plane.
The weight of the box is expressed as mg sin theta
The frictional force is expressed as the normal force times the coefficient of friction that is expressed as mu g cos theta.
By Newton's second law of motion, F = ma = mg sin theta - mu g cos theta
Thus, a = g (sin theta - u cos theta
Answer:
3.6*10^18s
Explanation:
To find the period of the satellite
We need to apply kephler's third law
Which is
MP² = (4π²/G) d³
d=semi-major axis which is the distance from center of moon = 98km+1740km = 1838km
where M= mass of the moon = 7.3x10^22kg
P=period
G=newtonian gravatational constant= 6.67x10^-11
To find the Period solve for P
P = √[(4π²/G M)xd³]
P=√(4 π²/6.67x10^-22*7.3x10^22kg) x (1.838x10^6m)³]
= 3.6*10^18s
Answer:29 electrons
Explanation: If you look on a periodic table, the atomic number is the amount of electrons it has.
A gas has to become ionisied in order to become a conductor. It must have a chain reaction in which atoms in it became unstable, in which they loose stabile electronic configuration. In order for a gas to become a conductor, it must have free particles, and it can happen only in ionisied gas.
Answer:
The heat causes the molecules on rubbing surfaces to move faster and have more energy.