1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
3 years ago
6

Billy is listening to a conversation through a solid 2 meter thick concrete wall. If it only takes .05 seconds for the conversat

ion to reach him, what is the speed of sound in concrete?
Physics
1 answer:
Alex_Xolod [135]3 years ago
6 0

Answer:

0.025 Meters a second, or 0.025 m/s

Explanation:

So, if we take the information that we know, 1) The wall is 2 meters thick, and 2) it took a total of 0.05 seconds to travel all the way. So, to get our answer, lets divide 0.05 by 2. That lands us with 0.025! This answer makes sense, because we know that sound travels quickest in solids, (Due to sound-waves  being a mechanical longitudinal wave, and solids have the densest particle formations, allowing the sound wave to travel swiftly compared to liquids and gases, in which the particles are more spread out.)

You might be interested in
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
tatiyna

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

4 0
3 years ago
Suppose a soccer player kicks the ball from a distance 29 m toward the goal. find the initial speed of the ball if it just passe
Rudik [331]

The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by v\sin39^\circ, where v here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving

\left(0\,\dfrac{\mathrm m}{\mathrm s}\right)^2-\left(v\sin39^\circ\right)^2=2\left(-9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)(2.4\,\mathrm m)

\implies v=11\,\dfrac{\mathrm m}{\mathrm s}

6 0
3 years ago
Mechanical energy is lost:
9966 [12]
3. Due to the fact that friction is not converted to kinetic energy nor potential energy. The energy is converted into heat energy which is lost and can’t be put back
7 0
3 years ago
A subatomic particle that has a positive charge and that is located in the nucleus of an atom
wolverine [178]

Answer:

c

Explanation:

3 0
3 years ago
Read 2 more answers
A 25 N force stretches a spring 280 cm. What was the spring constant? ​
boyakko [2]

Answer:

  1. F= 25N
  2. ∆l=280cm
  3. K=?
  4. you apply the formula = K:F/∆l
  5. = 0,089N/cm
4 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose you find yourself in your friend's third floor apartment building when you smell smoke coming from outside the door. you
    6·1 answer
  • Based on the bond energies given for each of the following which is the most stable? O=O 498 kJ/mol N≡N 946 kJ/mol C=C 614 kJ/mo
    10·1 answer
  • Formulate and write a computer program to determine the effects of pressure ratio, minimum/maximum temperature ratio, compressor
    12·1 answer
  • One kg of air contained in a piston-cylinder assembly undergoes a process from an initial state whereT1=300K,v1=0.8m3/kg, to a f
    7·1 answer
  • What direction does tangential velocity point?
    7·1 answer
  • a_______ is a region where the magnetic fields of a large number of atoms are lined up parallel to a magnets field.
    8·2 answers
  • Write a message to Mr. Chang explaining why the groundwater heating system will warm the school more than the water heater syste
    11·2 answers
  • Someone please help me!!
    5·1 answer
  • What is a wave in sound and light
    9·2 answers
  • 1. A 25.35-g piece of iron absorbs 1562.75 Joules of heat energy, and its temperature
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!