Cost = (0.001) x (the wattage of the light) x (the number of hours it's left on) x (the cost of each kilowatt-hour of electrical energy where you live).
Answer:
The speed of the two cars after coupling is 0.46 m/s.
Explanation:
It is given that,
Mass of car 1, m₁ = 15,000 kg
Mass of car 2, m₂ = 50,000 kg
Speed of car 1, u₁ = 2 m/s
Initial speed of car 2, u₂ = 0
Let V is the speed of the two cars after coupling. It is the case of inelastic collision. Applying the conservation of momentum as :


V = 0.46 m/s
So, the speed of the two cars after coupling is 0.46 m/s. Hence, this is the required solution.
Answer:
<h2>16,600 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 2000 × 8.3
We have the final answer as
<h3>16,600 N</h3>
Hope this helps you
Answer:
A) False
B) False
C) True
D) False
Explanation:
A) False, because when leaving the field, the coil experiences a magnetic force to the right.
B) When the loop is entering the field, the magnetic flux through it will increase. Thus, induced magnetic field will try to decrease the magnetic flux i.e. the induced magnetic field will be opposite to the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is out of the plane of figure. Due to that reason, the current would be counterclockwise. So the statement is false.
C) When the loop is leaving the field, the magnetic flux through the loop will decrease. Thus, induced magnetic field will try to increase the magnetic flux i.e. the inducued magnetic field will be in the same direction as the applied magnetic field. The applied magnetic field is into the plane of figure and thus the induced magnetic field is also into the plane of figure. Due to that reason, the current would be clockwise. So the statement is true.
D) False because when entering the field magnetic force will be toward left side