Answer:
The answer to your question is Nonmetals
Explanation:
Nonmetals they are bad conductors of heat and electricity except graphite.
Metalloids they are less conductors of electricity than metals.
Noble gases they conduct electricity.
Halogens they are not metals and do not conduct electricity.
From this information, we conclude that Oxygen and Selenium are nonmetals.
The material that is more closely related to the Styrofoam insulator.
Styrofoam is the term that is used for polystyrene foam in a trademark form. It is a petroleum-based plastic.
Keeping something warm includes the stopping of the transfer of heat from one object to another. This is how insulation works.
Styrofoam is an insulator, which means it'll help keep the heat from the environment out of your cooler. However, you'll still need cooling agents (like ice packs) to make the cooler cold in the first place.
Styrofoam is usually made mostly of air, which means it is a poor conductor of heat, but an excellent convector. It traps the air in small pockets, which blocks the flow of heat energy. This reduces both conduction and convection and makes Styrofoam a good insulator.
To learn more about Styrofoam here
brainly.com/question/21369568
#SPJ4
Answer:
L = 5076.5 kg m² / s
Explanation:
The angular momentum of a particle is given by
L = r xp
L = r m v sin θ
the bold are vectors, where the angle is between the position vector and the velocity, in this case it is 90º therefore the sine is 1
as we have two bodies
L = 2 r m v
let's find the distance from the center of mass, let's place a reference frame on one of the masses
=
i
x_{cm} =
x_{cm} =
x_{cm} =
x_{cm} = 13.1 / 2 = 6.05 m
let's calculate
L = 2 6.05 74.3 5.65
L = 5076.5 kg m² / s
Answer:
Explanation:
if its squares count the squares els messure it i think
Answer:
F₁ = 4 F₀
Explanation:
The force applied on the string by the ball attached to it, while in circular motion will be equal to the centripetal force. Therefore, at time t₀, the force on ball F₀ is given as:
F₀ = mv₀²/r --------------- equation (1)
where,
F₀ = Force on string at t₀
m = mass of ball
v₀ = speed of ball at t₀
r = radius of circular path
Now, at time t₁:
v₁ = 2v₀
F₁ = mv₁²/r
F₁ = m(2v₀)²/r
F₁ = 4 mv₀²/r
using equation (1):
<u>F₁ = 4 F₀</u>