Answer:
Part a)

Part b)

Explanation:
As we know that there is no external force on the system of two masses so here total momentum of the system will remains conserved
so we can say




Part b)
magnitude of the initial speed of A = 
magnitude of the initial speed of B = 
magnitude of final speed of A = 
magnitude of final speed of B = 
Now change in total kinetic energy is given as



Answer:
a,b) #_ {electron} = 1.64 10¹⁹ electrons, c) R = 19.54 Ω, d) V = 10.3 V
Explanation:
a and b) The current is defined as the number of electrons that pass per unit of time
let's look for the load
Q = I t
Q = 0.526 5
Q = 2.63 C
Let's use a direct rule of three proportions. If an electron has a charge of 1.6 10⁻¹⁹ C, how many electrons does 2.63 C have?
#_ {electron} = 2.63 C (1 electron / 1.6 10⁻¹⁹)
#_ {electron} = 1.64 10¹⁹ electrons
c) the resistance of a wire is given by
R = ρ l / A
where the resistivity of tungsten is 5.6 10⁻⁸ Ω
the area of the wire is
A = π r2 = π d²/4
we substitute
R = 
let's calculate
R = 5.6 10⁻⁸ 0.580
R = 19.54 Ω
d) let's use ohm's law
V = i R
V = 0.526 19.54
V = 10.3 V
Answer:
They can join a gym or a class to help keep themselves motivated to exercise.
Explanation:
The sample appears to have gone through 3 half-lives
1st half life: 1000 to 500 g
2nd half life: 500 to 250 g
3rd half life: 250 to 125 g
The duration of a half-life, therefore, can be inferred to be 66 ÷ (3) = 22 days.
After a 4th half life, there will be 125÷2= 62.5 g.
At this point, an additional 22 days will have passed, for a total of 88 days.
Answer is C.
Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis