Let car A's starting position be the origin, so that its position at time <em>t</em> is
A: <em>x</em> = (40 m/s) <em>t</em>
and car B has position at time <em>t</em> of
B: <em>x</em> = 100 m - (60 m/s) <em>t</em>
<em />
They meet when their positions are equal:
(40 m/s) <em>t</em> = 100 m - (60 m/s) <em>t</em>
(100 m/s) <em>t</em> = 100 m
<em>t</em> = (100 m) / (100 m/s) = 1 s
so the cars meet 1 second after they start moving.
They are 100 m apart when the difference in their positions is equal to 100 m:
(40 m/s) <em>t</em> - (100 m - (60 m/s) <em>t</em>) = 100 m
(subtract car B's position from car A's position because we take car A's direction to be positive)
(100 m/s) <em>t</em> = 200 m
<em>t</em> = (200 m) / (100 m/s) = 2 s
so the cars are 100 m apart after 2 seconds.
Explanation:
It took
for the sound to reach the 1st wall and at the same time time, the same sound took
to reach the 2nd wall. Assuming that the sound travels at 343 m/s, then let
be the distance of the person to the 1st wall and
be the distance to the 2nd wall. So the distance between the walls X is


Answer:
Time taken to reach your destination will be 10hours
Explanation:
Recall the formula for Speed;
speed=Total distance/Total time taken
Speed=2km/h
Total distance=20km
Time taken=x
let x be the unknown time taken
Input each values into the formula;
2=20/x
Making x subject of the equation
x=20/2
x=10
Total time taken =10hours.
The largest transition metal is copernicium with 112 protons.