Answer:
Solution
λ=v/n
Here, v=344 m s−1
n=22 MHz =22×106 Hz
λ=344/22×106=15.64×10−6m=15.64μm.
- The potential difference between two locations in an electric circuit is measured using a voltmeter.
- If the electricity passes through the voltmeter it shows deflection.
<h3>What is the purpose of a voltmeter?</h3>
- A voltage meter, usually referred to as a voltmeter, is a device that measures the voltage, or potential difference, between two points in an electrical or electronic circuit.
- volts is the unit of voltmeter(volts, millivolts, kilovolts)
<h3>What is the explanation for the link between current and voltage?</h3>
- Ohm's law states that the voltage across a conductor is directly proportional to the current flowing through it, provided all physical conditions and temperatures remain constant.
<h3>What is ohm's law in circuit?</h3>
- V = IR, where V is voltage, I is current, and R is resistance, is known as Ohm's Law.
- If you know the voltage of the battery in the circuit and how much resistance is in the circuit, you may use Ohm's Law to identify properties of a circuit, such as how much current is flowing through it.
To learn more about current and voltage visit:
brainly.com/question/10254698
#SPJ4
Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:

Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:

We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:


The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:

F= 3,104 N
The force required is 3,104 N
Answer:
See the answers below
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
<u>First case</u>
Vf = 6 [m/s]
Vo = 2 [m/s]
t = 2 [s]
![6=2+a*2\\4=2*a\\a=2[m/s^{2} ]](https://tex.z-dn.net/?f=6%3D2%2Ba%2A2%5C%5C4%3D2%2Aa%5C%5Ca%3D2%5Bm%2Fs%5E%7B2%7D%20%5D)
<u>Second case</u>
Vf = 25 [m/s]
Vo = 5 [m/s]
a = 2 [m/s²]
![25=5+2*t\\t = 10 [s]](https://tex.z-dn.net/?f=25%3D5%2B2%2At%5C%5Ct%20%3D%2010%20%5Bs%5D)
<u>Third case</u>
Vo =4 [m/s]
a = 10 [m/s²]
t = 2 [s]
![v_{f}=4+10*2\\v_{f}=24 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D4%2B10%2A2%5C%5Cv_%7Bf%7D%3D24%20%5Bm%2Fs%5D)
<u>Fourth Case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
![v_{f}=5+8*10\\v_{f}=85 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D5%2B8%2A10%5C%5Cv_%7Bf%7D%3D85%20%5Bm%2Fs%5D)
<u>Fifth case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
