Answer:
The speed of molecule decreases and temperature also decreases
Explanation:
Kinetic energy of the molecules of a subsance is directly proportional to the temperature of molecule So as the kinetic energy decrease, temperature also decreases. decreses their speed.
Answer:
Zero work done,since the body isn't acting against or by gravity.
Explanation:
Gravitational force is usually considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.
Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.
The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm
An example of a balanced force is two cards leaning against each other and not falling over, or two football players blocking each other but neither overpowering the other. An example of an unbalanced force is two cards leaning on each other then falling over, or two football players blocking each other, then one tackles the other.