Answer:
Lorentz force, the force exerted on a charged particle q moving with velocity v through an electric E and magnetic field B. The entire electromagnetic force F on the charged particle is called the Lorentz force (after the Dutch physicist Hendrik A. Lorentz) and is given by F = qE + qv × B.
Explanation:
N/A
There is no "why", because that's not what happens. The truth is
exactly the opposite.
Whatever the weight of a solid object is in air, that weight will appear
to be LESS when the object is immersed in water.
The object is lifted by a force equal to the weight of the fluid it displaces.
It displaces the same amount of air or water, and any amount of water
weighs more than the same amount of air. So the force that lifts the
object in water is greater than the force that lifts it in air, and the object
appears to weigh less in the water.
Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by

ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by

L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.
Answer:
Angular acceleration = 23.68 rad / s²
Explanation:
Given that,
acceleration = 9m/s²
Therefore acceleration of string is 9m/s²
since string is constant in length
cylinder of radius 38.0 cm = 0.38m
Angular acceleration = a / r
Angular acceleration = 9 / 0.38
= 23.68 rad / s²
Angular acceleration = 23.68 rad / s²
Using the equation for period length for a pendulum, you get 32.829 meters.