1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oxana [17]
3 years ago
7

A ball is dropped from rest at point O (height unknown). After falling for some time, it passes by a window of height 3 m and it

does so in 0.49 s. The ball accelerates all the way down; let vA be its speed as it passes the window’s top A and vB its speed as it passes the window’s bottom B. O A B 3 m bb b b b b b b b b b b x y How much did the ball speed up as it passed the window; i.e., calculate ∆vdown = vB −vA ? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s. 017 (part 2 of 2) 10.0 points Calculate the speed vA at which the ball passes the window’s top. Answer in units of m/s.
Physics
1 answer:
Usimov [2.4K]3 years ago
3 0

Answer:

Part a)

\Delta v_{down} = 4.8 m/s

Part b)

v_a = 3.71 m/s

Explanation:

Since ball is dropped under uniform gravity

so here we can say that the distance of 3 m moved by the ball under uniform acceleration is given as

d = (\frac{v_f + v_i}{2})t

so we have

3 = (\frac{v_f + v_i}{2})(0.49)

v_f + v_i = 12.24

also we know that

v_f - v_i = at

v_f - v_i = (9.81)(0.49)

v_f - v_i = 4.81

now we will have

v_f = 8.52 m/s

v_i = 3.71 m/s

Part a)

\Delta v_{down} = v_b - v_a

\Delta v_{down} = 8.52 - 3.71

\Delta v_{down} = 4.8 m/s

Part b)

speed at the top of the window is

v_a = 3.71 m/s

You might be interested in
Which type of mirror causes light rays to refract away from each other?
Vikentia [17]
Mirrors don't cause refraction.

A convex mirror could cause parallel rays to REFLECT away from each other.
8 0
3 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Tresset [83]

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

5 0
3 years ago
A second baseman tosses the ball to the first baseman, who catches it at the same level from which it was thrown. The throw is m
Anit [1.1K]
 <span>(a) 

Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get: 

18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component. 

(b) 
To much the same end do we derive the vertical component: 

18.0*sin37.5 = v_y = 10.96 ms^-1 

Which we then divide by acceleration, a_y, to derive the time till maximal displacement, 

10.96/9.8 = 1.12 s 

Finally, doubling this value should yield the particle's total time with r_y > 0 

<span>2.24 s

I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
6 0
3 years ago
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
2 years ago
The difference between the Carbon 12 and Carbon 14 isotopes is the
Elina [12.6K]
Answer:
The number of neutrons.

Explaination:
The atoms of carbon 12 contain 6 neutrons while the atoms of carbon 14 contain 8 neutrons
4 0
3 years ago
Other questions:
  • The amount of a fossil fuel that can be extracted at a profit using current technology is called what?
    11·1 answer
  • Newton's first law of motion states that an object at rest or moving with constant velocity will remain that way until it is act
    9·1 answer
  • A horizontal spring is attached to the wall on one end and to a mass on the other end. The mass can slide freely on a frictionle
    11·1 answer
  • The volume of a rectangular prism is given by the formula V = lwh, where l is the length of the prism, w is the width, and h is
    11·1 answer
  • The bands on Jupiter are ultimately caused by...
    12·1 answer
  • Digestion and breathing are _____.
    5·1 answer
  • A student tries to measure the period of a pendulum that is already swinging
    15·1 answer
  • The
    8·1 answer
  • Thank you if you them
    14·1 answer
  • Can you guys please help me on this one?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!