Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the answers:
Fullback running
<span>Mo = mass * velocity </span>
<span>Mo = 95kg * 8.2 m/s =779 kg*m/s (a </span>
<span>He got stopped Change in Mo = 779 kg*m/s (b </span>
<span>Both stopped ===> Tackle's mo = - Halfback's Mo = - 779 kg*m/s (c & d </span>
<span>- 779 = 128 * v </span>
<span>v= - 6.09 m/s (e</span>
Answer:
a) Maximum speed = 25.28 m/s
b) Total time = 27.27 s
c) Total distance traveled = 402.43 m
Explanation:
a) Maximum speed is obtained after the end of acceleration
v = u + at
v = 13.5 + 1.9 x 6.2 = 25.28 m/s
Maximum speed = 25.28 m/s
b) We have maximum speed = 25.28 m/s, then it decelerates 1.2 m/s² until it stops.
v = u + at
0 = 25.28 - 1.2 t
t = 21.07 s
Total time = 6.2 + 21.07 = 27.27 s
c) Distance traveled for the first 6.2 s
s = ut + 0.5 at²
s = 13.5 x 6.2 + 0.5 x 1.9 x 6.2² = 120.22 m
Distance traveled for the second 21.07 s
s = ut + 0.5 at²
s = 25.28 x 21.07 - 0.5 x 1.2 x 21.07² = 282.21 m
Total distance traveled = 120.22 + 282.21 = 402.43 m
Answer:
correct option is d) 7.0 x 10^-7 N
Explanation:
given data
distance = 175 picometers = 1.75 ×
m
to find out
electrical force
solution
we know atomic no of uranium is 92
and charge on electron is = 1.6 ×
C
and electrical force is express as
electrical force =
.............1
put here value we get
electrical force = 
electrical force = 6.921 ×
N
so correct option is d) 7.0 x 10^-7 N
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>
Answer:
Depending on where people are located in the world (Northern hemisphere, Southern hemisphere, etc) depends on the difference in direction (North, South, east, West) which is most likely why it'd look different.
Explanation:
I dunno if this is along the lines of an answer you're looking for, but hope this helps :)