Answer:
E = 1580594.95 N/C
Explanation:
To find the electric field inside the the non-conducting shell for r=11.2cm you use the Gauss' law:
(1)
dS: differential of the Gaussian surface
Qin: charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85 × 10-12 C2/N ∙ m2
The electric field is parallel to the dS vector. In this case you have the surface of a sphere, thus you have:
(2)
Qin is calculate by using the charge density:
(3)
Vin is the volume of the spherical shell enclosed by the surface. a is the inner radius.
The charge density is given by:

Next, you use the results of (3), (2) and (1):

Finally, you replace the values of all parameters, and for r = 11.2cm = 0.112m you obtain:

hence, the electric field is 1580594.95 N/C
Answer:
option B
Explanation:
When a body is immersed in liquid there will be two force is acting on the body.
First one force acting downward due to weight of the body.
And the second force acting on the object will be buoyant force.
If the object is not in equilibrium the apparent weight will be equal to net force acting on the object.

W is the weight of the object acting downward
Fb is the buoyancy force acting upward on the object.
Hence, the correct answer is option B
W=Fs
W=18(0.42)
W=7.56
Answer: 7.6 J (first option)
Answer:
a) The trajectory will be a helical path.
b) θ = 2*π rad
Explanation:
a) Since the initial velocity of the particle has a component parallel (x-component) to the magnetic field B
, the trajectory will be a helical path.
b) Given
t = 2*π*m/(q*B)
We can use the equation
θ = ω*Δt
where
θ is the angular displacement
ω is the angular speed, which is obtained as follows:
ω = q*B/m
then we have
θ = (q*B/m)*2*π*m/(q*B)
⇒ θ = 2*π rad