Answer:
&
Step-by-step explanation:
1) Subtract from both sides. This should leave you with .
2) Square root both sides. This should leave you with & .
<em>You can stop here if this is what the problem is asking for. However, it is not fully simplified.</em>
<em />
3) Factor the equation. This should leave you with & .
Positive 28 because to negative will equal a positive number
To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
Answer:
<u>Option A</u>
Step-by-step explanation:
To reflect line segment BC over line m, BB' will be perpendicular to the line m
and line m bisector of BB'.
<u>So, the correct answer is option A</u>
A) Line m is the perpendicular bisector of line segment BB' and the line segment CC'
<u>Option b is wrong</u> , it is impossible for the line B'C' to be perpendicular to line BC. B'C' is the image of BC.
<u>Both option c and d is wrong</u> because the perpendicular distance from b to the line m not equal to the perpendicular distance from c to the line m.
Answer:
Step-by-step explanation:
The magnitude of 3D vector can be given by the following:
Plugging in given values, we have:
.