WHat's a concept map again?
I forgot...
This requires familiarity with the different theories (or concepts) of acids and bases.
On the Arrhenius concept, an acid is a substance that produces an H⁺ ion in water such that the H⁺ concentration increases, and a base is a substance that produces an OH⁻ ion in water such that the OH⁻ concentration increases.
On the Brønsted–Lowry concept, an acid is a substance that donates a proton (which is basically an H⁺ ion) in a solvent, and a base is a substance that accepts a proton in a solvent.
On the Lewis concept, an acid is a substance that accepts an electron pair in a solvent, and a base is a substance that donates an electron pair in a solvent.
The concepts become progressively broader, i.e., the Arrhenius concept is the most restrictive and the Lewis concept is the least restrictive. As a corollary, an Arrhenius acid or base is also both a Brønsted–Lowry acid or base and a Lewis acid or base, respectively; a Brønsted–Lowry acid or base is not necessarily an Arrhenius acid or base, but an Arrhenius acid or base is also a Lewis acid or base, respectively. And finally, a Lewis acid or base may not necessarily be either an Arrhenius or a Brønsted–Lowry acid or base.
So, with the above concepts in mind, we can match the statements in column A with the type of acid or base in column B:

This is asking for the absolute humidity. So if the relative humidity is 65 % and the air temperature is 30 then we need to have in mind the barometric pressure which will be 760. The humidity in the air will be 0.020 kg/m3. In order to know this we calculate it eith the mass of water vapour in a unit volume of air. This is a measure of the actual water vapour content of the air. the for mula would go like this: AH = Mv / V.
When waves act together, you talk about "interference".
When they reinforce each other, it is "constructive interference".
When they cancel each other, it is "destructive interference".
1. This is a combustion reaction.<span>
<span>Combustion reactions can happen with the </span>presence of O</span>₂ <span>gas. O₂<span>
reacts with another element or compound and </span></span>oxidize<span> it. Here ethanol reacts with O₂<span> and produces </span></span>CO₂ and H₂O as products.<span> <span>Combustion is also called as </span></span>burning. <span>
2.
Reaction will shift to right. <span>
</span><span>If more CH</span>₃CH₂OH is added to the system, then the</span> amount of CH₃CH₂OH will increase.<span> <span>Then the equilibrium in the system </span></span>will be broken.<span> <span>To make the equilibrium again, the </span></span>added CH₃CH₂OH should be removed.<span> To do that system will consume more CH</span>₃CH₂<span>OH to make products which helps to decrease
the amount of ethanol. Hence,
the reaction will shift to right.<span>
3. The reaction
will shift to right.</span><span>
</span><span>If the water is extracted from the system, the </span>amount of water will decrease. <span>That means the </span>amount of products decrease. Then the system will try to gain equilibrium by increasing the water. To increase water the forward reaction should be enhanced. <span>Hence, the</span> reaction will shift to right.<span>
4. The reaction
will shift to right.
</span><span>This is an </span>exothermic reaction <span>since it </span>produces heat. If the produced heat is removed, then the system will be cold. To maintain the temperature, system has to increase the amount of heat produced. Then, the forward reaction should be
enhanced. Hence, the reaction
will shift to right.<span>
5. The Le
Chatelier's principle.
</span>Le Chatelier's principle says if a
condition changes in a system which was in an equilibrium state, the system
will try to gain equilibrium by correcting the changed condition back to
normal. Most of industries which make
chemicals use this principle</span>