If you count the number of electrons (small dots), you have the atomic number. In this case you have 11 so this atom is a sodium atom. Sodium has 1 valence electron (electron on the outer shell) and chlorine has 7. This means that if sodium gave one electron away and chlorine would obtain one electron, they would both have the (ideal) noble gas conformation (full outer shell).
Answer:
1. How many ATOMS of boron are present in 2.20 moles of boron trifluoride? atoms of boron.
2. How many MOLES of fluorine are present in of boron trifluoride? moles of fluorine.
Explanation:
The molecular formula of boron trifluoride is
.
So, one mole of boron trifluoride has one mole of boron atoms.
1. The number of boron atoms in 2.20 moles of boron trifluoride is 2.20 moles.
The number of atoms in 2.20 moles of boron is:
One mole of boron has ----
atoms.
Then, 2.20 moles of boron has
-
2. Calculate the number of moles of BF3 in 5.35*1022 molecules.

One mole of boron trifluoride has three moles of fluorine atoms.
Hence, 0.0888moles of BF3 has 3x0.0888mol of fluorine atoms.
=0.266mol of fluorine atoms.
We know that molarity = mol/L, so:
1.5 M = x mol/0.345 L
1.5 M * 0.345 L = x mol => 0.5175 mol
0.5175 mol/0.250 L = 2.07 M
Your new molarity of the solution will be 2.07 M.
Molarity of solution is mathematically expressed as,
M =

We know that volume = mass/density
Given: mass of solution = 100 g, Density = 1.34 g/ml
∴ volume = 100/1.34 = 88.49 ml = 0.08849 l
Also, we know that molecular weight of sucrose = 342.3 g/mol
∴M =

= 6.979 M
Thus, molarity of solution is 6.979 M