Answer:
No, it is not conserved
Explanation:
Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.
The total kinetic energy before the collision is:

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.
After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.
Answer:
nuclear energy.............
Answer:
10N
Explanation:
Equation: ΣF = ma
Fapp = ma
Fapp = (2kg)(5m/s^2) (im guessing you mean 5.00 m/s^2 not m/s)
Fapp = 10*kg*m/s^2
Fapp = 10N
Scientists have been observing Earth for a long time. They use NASA satellites and other instruments to collect many types of information about Earth's land, atmosphere, ocean and ice. This information tells us that Earth's climate is getting warmer.
Extra:
Extra greenhouse gases in our atmosphere are the main reason that Earth is getting warmer. Greenhouse gases, such as carbon dioxide (CO2) and methane, trap the Sun's heat in Earth's atmosphere.
It's normal for there to be some greenhouse gases in our atmosphere. They help keep Earth warm enough to live on. But too many greenhouse gases can cause too much warming.
The burning of fossil fuels like coal and oil increase the amount of CO2 in our air. This happens because the burning process combines carbon with oxygen in the air to make CO2.
It's important that we monitor CO2 levels, because too much CO2 can cause too much warming on Earth. Several NASA missions have instruments that study CO2 in the atmosphere.