Answer:

Explanation:
We need only to apply the definition of acceleration, which is:

In our case the final velocity is
, the initial velocity is
since it departs from rest, the final time is
and the initial time we are considering is 
So for our values we have:

In a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
To find the answer, we have to know more about the transformer.
<h3>
How transformer works?</h3>
- An item utilized in the transfer of electric energy is a transformer.
- AC current is used for transmission.
- It is frequently used to modify the supply voltage between circuits without altering the AC frequency.
- The fundamentals of mutual and electromagnetic induction govern how the transformer operates.
- Magnetic field through the primary coil changes when primary coil current varies. the iron core of the secondary coil likewise has a magnetic field.
- EMF is therefore generated in the secondary coil.
Thus, we can conclude that, in a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
Learn more about the transformer here:
brainly.com/question/26787198
#SPJ4
Answer:
The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.
Explanation:
Given:
Molar mass of oxygen, 
Molar mass of hydrogen, 
We know ideal gas law as:

where:
P = pressure of the gas
V = volume of the gas
n= no. of moles of the gas molecules
R = universal gs constant
T = temperature of the gas
∵
where:
m = mass of gas in grams
M = molecular mass of the gas
∴Eq. (1) can be written as:


as: 
So,

Now, according to given we have T,P,R same for both the gases.




∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>
Let us say that x is the cut that we will make on the
sides to make a box, therefore the new dimensions are:
l = 15 – 2x
w = 8 – 2x
It is 2x since we cut on two sides.
We know that volume is:
V = l w x
V = (15 – 2x) (8 – 2x) x
V = 120x – 30x^2 – 16x^2 + 4x^3
V = 120x – 46x^2 + 4x^3
Taking the 1st derivative:
dV/dx = 120 – 92x + 12x^2
Set dV/dx = 0 to get maxima:
120 – 92x + 12x^2 = 0
Divide by 12:
x^2 – (92/12)x + 10 = 0
(x – (92/24))^2 = -10 + (92/24)^2
x - 92/24 = ±2.17
x = 1.66, 6
We cannot have x = 6 because that will make our w
negative, so:
x = 1.66 inches
So the largest volume is:
V = 120x – 46x^2 + 4x^3
V = 120(1.66) – 46(1.66)^2 + 4(1.66)^3
V = 90.74 cubic inches