I believe it would be an unbalanced force. Because the forces are unbalanced, one side is stronger and, therefore, the object will move.
The spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Explanation:
When a spring is stretched or compressed its length changes by an amount x from its equilibrium length then the restoring force is exerted.
spring constant is k = 1.00 * 10^3 N/m
mass is x = 20.0 cm
According to Hooke's law, To find restoring force,
F = - kx
= - 1.00 *10 ^3 * 20.0
F = 20000 N/m
Thus, the spring has a spring constant of 1.00 * 10^3 N/m and the mass has been displaced 20.0 cm then the restoring force is 20000 N/m.
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.

There are two different processes here:
1) we must add heat in order to bring the temperature of the water from

to

(the temperature at which the water evaporates)
2) other heat must be added to make the water evaporates
1) The heat needed for process 1) is

where

is the water mass

is the water specific heat

is the variation of temperature of the water
If we plug the numbers into the equation, we find

2) The heat needed for process 2) is

where

is the water mass

is the latent heat of evaporation of water
If we plug the numbers into the equation, we find

So, the total heat needed for the whole process is