Answer: mg/Cosθ
Explanation:
Taking horizontal acceleration of wedge as 'a'
FCosΘ = FsinΘ
F = mass(m) × acceleration(a) = ma
For horizontal resolution g = 0
Therefore,
Horizontal = Vertical
maCosΘ = mgSinΘ
aCosΘ = gSinΘ
a = gSinΘ/CosΘ
Recall from trigonometry :
SinΘ/Cosθ = tanΘ
Therefore,
a = gtanΘ
Normal force acing on the wedge:
mgCosΘ + maSinΘ - - - - (y)
Substitute a = gtanΘ into (y)
mgCosΘ + mgtanΘsinΘ
tanΘ = sinΘ/cosΘ
mgCosΘ + mgsinΘ/cosΘsinΘ
mgCosΘ + mgsin^2Θ/cosΘ
Factorizing
mg(Cosθ + sin^2Θ/cosΘ)
Taking the L. C. M
mg[(Cos^2θ + sin^2Θ) /Cosθ]
Recall: Cos^2θ + sin^2Θ = 1
mg[ 1 /Cosθ]
mg/Cosθ
The two elements are in the same period, with Element R the first element in the period and Element Q the last element.
The rod's mass moment of inertia is 5kgm².
<h3>Moment of Inertia:</h3>
The "sum of the product of mass" of each particle with the "square of its distance from the axis of rotation" is the formula for the moment of inertia.
The Parallel axis Theorem can be used to compute the moment of inertia about the end of the rod directly or to derive it from the center of mass expression. I = kg m². We can use the equation for I of a cylinder around its end if the thickness is not insignificant.
If we look at the rod we can assume that it is uniform. Therefore the linear density will remain constant and we have;
or = M / L = dm / dl
dm = (M / L) dl


Here the variable of the integration is the length (dl). The limits have changed from M to the required fraction of L.

![I = \frac{M}3L}[(\frac{L^3}{2^3} - \frac{-L^3}{2^3} )]\\\\I = \frac{1}{12}ML^2](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BM%7D3L%7D%5B%28%5Cfrac%7BL%5E3%7D%7B2%5E3%7D%20%20%20-%20%5Cfrac%7B-L%5E3%7D%7B2%5E3%7D%20%29%5D%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B1%7D%7B12%7DML%5E2)
Mass of the rod = 15 kg
Length of the rod = 2.0 m
Moment of Inertia, I = 
= 5 kgm²
Therefore, the moment of inertia is 5kgm².
Learn more about moment of inertia here:
brainly.com/question/14119750
#SPJ4
The magnetic field of a bar magnet is strongest at either pole of the magnet. It is equally strong at the north pole when compared with the south pole. The force is weaker in the middle of the magnet and halfway between the pole and the center.
Temperature, gravity, atmosphere and water