Answer:
C1V1=C2V2
C1 is 2.0mol/l
V1=?
C2=.4mol/L
V2=100ml or for this 0.1L
V1 is 20ml
Best way to prepare this is to measure out 20ml of the 2 molar solution and add 80mL to it to get to 100mL
Explanation:
The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
Answer:
5.56 × 10^23 molecules
Explanation:
The number of molecules in a molecule can be calculated by multiplying the number of moles in that molecule by Avagadro's number (6.02 × 10^23)
Using mole = mass/molar mass
Molar mass of N2O4 = 14(2) + 16(4)
= 28 + 64
= 92g/mol
mole = 85.0/92
= 0.9239
= 0.924mol
number of molecules of N2O4 (nA) = 0.924 × 6.02 × 10^23
= 5.56 × 10^23 molecules