Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Answer:
i) 16.5g of ZnO
ii) 9.8 dm³ of NO2
Explanation:
The working is shown in the photo so kindly refer to it
Answer is: C) the fact that the number of lone pairs of electrons on the central atom is greater in the case of water.
Carbon(IV) oxide is nonpolar because CO₂ is linear molecule and the oxygen atoms are symmetrical (bond angles 180°).
Water is polar because of the bent shape of the molecule.
Oxygen atom in water molecule has sp3 hybridization. The bond angle between the two hydrogen atoms is approximately 104.45°.
Oxygen atom has atomic number 8, it means it has eight protons and eight electrons, so atom has neutral charge. Oxygen is a nonmetal.
Electron configuration of oxygen atom: ₈O 1s² 2s² 2p⁴.
Oxygen atom has six valence electrons
, two lone pairs and two electrons that form two sigma bonds with hydrogen atoms.
Carbon is a chemical element with symbol C and atomic number 6, which means it has 6 protons and six electrons. Four valence electrons are in 2s and 2p orbitals.
Electron configuration of carbon atom: ₆C 1s² 2s² 2p².
In carbon dioxide, carban has sp hybridization with no lone pairs.
Answer:
SEE BELOW
Explanation:
Glucose (C6H12O6) is an organic compound composed of the elements carbon, hydrogen and oxygen.
Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K