Answer:
didya know this is chrating. everyone has a breain and so do u .
Explanation:
use and u will pass
Answer:
Approximately
.
Explanation:
Assuming that there is no other force on this vehicle, the
force from the road would be the only force on this vehicle. The net force would then be equal to this
force. The size of the net force would be
.
Let
denote the mass of this vehicle and let
denote the net force on this vehicle.
By Newton's Second Law of motion, the acceleration of this vehicle would be proportional to the net force on this vehicle. In other words, the acceleration of this vehicle,
, would be:
.
For this vehicle,
whereas
. The acceleration of this vehicle would be:
.
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data: True.
<h3>What is machine learning?</h3>
Machine learning (ML) is also known as artificial intelligence (AI) and it can be defined as a subfield in computer science which typically focuses on the use of computer algorithms, data-driven techniques (methods) and technologies to develop a smart computer-controlled robot that has the ability to automatically perform and manage tasks that are exclusively meant for humans or solved by using human intelligence.
In Machine learning (ML), data-driven techniques (methods) are used to learn source ranges directly from observed acoustic data in a bid to proffer solutions to source localization in ocean acoustics.
In conclusion, a normalized sample covariance matrix (SCM) is constructed and used as the input, especially after pre-processing the pressure that's received by a vertical linear array in Machine learning (ML).
Read more on machine learning here: brainly.com/question/25523571
#SPJ1
The answer is a) Teres Major Muscle
Answer:
<h3>The answer is 2.15 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

where
f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.15 m/s²</h3>
Hope this helps you