1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
3 years ago
12

Please help :/ The same motor is used in rockets with different masses. The rockets have different accelerations. According to N

ewton’s second law, how is acceleration expected to change as the rocket mass increases?
Acceleration cannot be predicted based on changes in mass.
As rocket mass increases, acceleration decreases.
As rocket mass increases, acceleration increases.
There are no changes in acceleration, as it would depend on the amount of force. _

Different amounts of force are applied to the same boat over several trials, and the acceleration is measured. In a graph of acceleration versus net force, what does the slope of the graph represent?
the speed of the boat _
the mass of the boat _
the inverse of the mass of the boat _
the inverse of the speed of the boat
Physics
1 answer:
Ymorist [56]3 years ago
7 0

Answer:

1. As rocket mass increases, acceleration decreases.

2. The inverse of the mass of the boat.

Explanation:

1. Newton's second law of motion states;

         F = ma

where F is the force applied, m is the mass and a is the acceleration.

Therefore, increasing the mass of a rocket increases its weight which would reduce its acceleration provided that the force is constant. Thus, as rocket mass increases, acceleration decreases.

2. The slope of the graph can be expressed as;

From Newton's second law,

F = ma

Slope = (Δa) ÷ (ΔF)

Slope = \frac{a}{F}

⇒ \frac{1}{m} = \frac{a}{F}

Therefore, the slope of the graph is the reciprocal of the mass of the boat.

You might be interested in
8. Three grams of Bismuth-218 decay to 0.375 grams in one hour. What is the half-
Evgen [1.6K]

Answer: 0.333 h

Explanation:

This problem can be solved using the <u>Radioactive Half Life Formula</u>:  

A=A_{o}.2^{\frac{-t}{H}} (1)  

Where:  

A=0.375 g is the final amount of the material  

A_{o}=3 g is the initial amount of the material  

t=1 h is the time elapsed  

H is the half life of the material (the quantity we are asked to find)  

Knowing this, let's substitute the values and find h from (1):

0.375 g=(3 g)2^{\frac{-1h}{H}} (2)  

\frac{0.375 g}{3 g}=2^{\frac{-1h}{H}} (3)  

Applying natural logarithm in both sides:

ln(\frac{0.375 g}{3 g})=ln(2^{\frac{-1 h}{H}}) (4)  

-2.079=-\frac{1 h}{H}ln(2) (5)  

Clearing H:

H=\frac{-1h}{-2.079}(0.693) (6)  

Finally:

h=0.333 h This is the half-life of the Bismuth-218 isotope

4 0
3 years ago
The acceleration due to gravity at the surface of a planet depends on the planet's mass and size; therefore other planets will h
Cloud [144]
Chaff has also written about his book of Mormon that is not true to say this but it doesn't have the
5 0
3 years ago
An ambulance is traveling north at 55.9 m/s, approaching a car that is also traveling north at 28.4 m/s. The ambulance driver he
wlad13 [49]

Answer:

915 Hz

Explanation:

The observed frequency from a sound source is given as

f₀ = f [(v + v₀)/(v+vₛ)]

where

f₀ = observed frequency of the sound by the observer = ?

f = actual frequency of the sound wave = 983 Hz

v = actual velocity of the sound waves = 343 m/s

vₛ = velocity of the source of the sound waves = 55.9 m/s

v₀ = velocity of the observer = 28.4 m/s

f₀ = 983 [(343+28.4)/(343+55.9)]

f₀ = 915.2 Hz = 915 Hz

6 0
3 years ago
The peak luminosity of a white dwarf supernova is around 1010 Lsun, and it remains brighter than 108 Lsun for about 150 days. In
Airida [17]

Answer:

Explanation: find the attached solution below

8 0
3 years ago
Consider a father pushing a child on a playground merry-go-round. The system has a moment of inertia of 84.4 kg.m^2. The father
Sophie [7]

Answer:

Explanation:

Given that:

the initial angular velocity \omega_o = 0

angular acceleration \alpha = 4.44 rad/s²

Using the formula:

\omega = \omega_o+ \alpha t

Making t the subject of the formula:

t= \dfrac{\omega- \omega_o}{ \alpha }

where;

\omega = 1.53 \ rad/s^2

∴

t= \dfrac{1.53-0}{4.44 }

t = 0.345 s

b)

Using the formula:

\omega ^2 = \omega _o^2 + 2 \alpha \theta

here;

\theta = angular displacement

∴

\theta = \dfrac{\omega^2 - \omega_o^2}{2 \alpha }

\theta = \dfrac{(1.53)^2 -0^2}{2 (4.44) }

\theta =0.264 \ rad

Recall that:

2π rad = 1 revolution

Then;

0.264 rad = (x) revolution

x = \dfrac{0.264 \times 1}{2 \pi}

x = 0.042 revolutions

c)

Here; force = 270 N

radius = 1.20 m

The torque = F * r

\tau = 270 \times 1.20 \\ \\  \tau = 324 \ Nm

However;

From the moment of inertia;

Torque( \tau) = I \alpha \\ \\  Since( I \alpha) = 324 \ Nm. \\ \\  Then; \\ \\  \alpha= \dfrac{324}{I}

given that;

I = 84.4 kg.m²

\alpha= \dfrac{324}{84.4} \\ \\  \alpha=3.84 \ rad/s^2

For re-tardation; \alpha=-3.84 \ rad/s^2

Using the equation

t= \dfrac{\omega- \omega_o}{ \alpha }

t= \dfrac{0-1.53}{ -3.84 }

t= \dfrac{1.53}{ 3.84 }

t = 0.398s

The required time it takes= 0.398s

5 0
2 years ago
Other questions:
  • During an earthquake, you should do all of the following EXCEPT _________________________.
    15·2 answers
  • A spaceship starting from a resting position accelerates at a constant rate of 9.8 meters per second per second. How long and ho
    8·1 answer
  • When a steady direct current flows through a coil, the only opposition to the flow of current is the resistance of the wire from
    11·1 answer
  • What is the moment of inertia of a cube with mass M=0.500kg and side lengths s=0.030m about an axis which is both normal (perpen
    7·1 answer
  • 3. Infer A car is travelling down a
    7·1 answer
  • What is the delay between a stimulus and the response it triggers in an organism?
    13·1 answer
  • According to the FITT Principle you should exercise how many days ?
    11·1 answer
  • Moving along the elevtromagnetic spectrum from low frequency to high frequency, what , if anything, happens to the wavelength?
    12·1 answer
  • Determine whether a moving tennis ball and a racket held by the player have the same momentum or different momentum. If differen
    14·1 answer
  • A) The motor speed is less than wheel speed.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!