<u>Answer</u>: The mass of the object is 25kg.
The given question deals with Newton's second law of motion and its applications.
<u>Explanation:</u> Given force, F=500N
acceleration, a=20 m/
From Newton's 2nd law of motion , we have
F=ma where m=mass of the object
⇒500=m×20
⇒m=500/20=25
∴ Mass of the object is 25 kg .
<u> </u><u>Reference Link: </u>brainly.com/question/1141170
#SPJ2
Answer: the answer would be four thousand
Explanation: hope this helps
Answer:
49N
Explanation:
F=ma
We know the mass is 5kg, and since the ball is suspended on one cable, the acceleration is g, 9.8m/s^2
F=5kg*9.8m/s^2
= 49N
Hope this helps!
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.