Answer: if you gogle it it will tell you the awenser
lanation:
Answer:
69becuz u smell l i k e c h e e z e
Answer:
The direction of the force at A and B is perpendicular to the walls of the container.
The direction of the force at C is down.
The direction of the force in D is up
The direction of the force at E is to the left.
The attached figure shows the forces exerted by the water at points A, B, C, D and E.
Explanation:
The water is in contact with the bowl and with the fish. It exercises at points A, B, C, D and E, but the direction is different from the force.
The fish has a buoyant force on the water and that direction is up. The direction of at point D is up.
The column of water on the fish has a downward force, therefore the direction of the force at point C is down. The water column to the right of the fish has a force to the left, and the direction at point E is to the left.
The water will exert a force on the walls of the container and this force at points A and B is a on the walls of the container.
Answer:
a) P1=100kpa
V1=6m³
V2=?
P2=50kpa
rearranging mathematically the expression for Boyle's law
V2=(P1V1)/P2=(100×6)/50=12m³
b) same apartment as in (a) but only the value of P2 changes
=> V2=(100×6)/40=15m³
Explanation:
since temperature is not changing we use Boyle's law. mathematically expressed as P1V1=P2V2