Answer:
33.6 Ns backward.
Explanation:
Impulse: This can be defined as the product of force and time. The S.I unit of impulse is Ns.
From Newton's second law of motion,
Impulse = change in momentum
I = mΔv................................. Equation 1
Where I = impulse, m = mass of the skater, Δv = change in velocity = final velocity - initial velocity.
Given: m = 28 kg, t = 0.8 s, Δv = -1.2-0 = -1.2 m/s (Note: the initial velocity of the skater = 0 m/s)
Substituting into equation 1
I = 28(-1.2)
I = -33.6 Ns
Thus the impulse = 33.6 Ns backward.
Answer:
ΔK = -6 10⁴ J
Explanation:
This is a crash problem, let's start by defining a system formed by the two trucks, so that the forces during the crash have been internal and the moment is preserved
initial instant. Before the crash
p₀ = m v₁ + M 0
final instant. Right after the crash
p_f = (m + M) v
p₀ = p_f
mv₁ = (m + M) v
v =
we substitute
v = 3
v = 1.0 m / s
having the initial and final velocities, let's find the kinetic energy
K₀ = ½ m v₁² + 0
K₀ = ½ 20 10³ 3²
K₀ = 9 10⁴ J
K_f = ½ (m + M) v²
K_f = ½ (20 +40) 10³ 1²
K_f = 3 10⁴ J
the change in energy is
ΔK = K_f - K₀
ΔK = (3 - 9) 10⁴
ΔK = -6 10⁴ J
The negative sign indicates that the energy is ranked in another type of energy
Answer:
Explanation:
Given that,
Two resistor has resistance in the ratio 2:3
Then,
R1 : R2 = 2:3
R1 / R2 =⅔
3 •R1 = 2• R2
Let R2 = R
Then,
R1 = ⅔R2 = 2/3 R
So, if the resistor are connected in series
Let know the current that will flow in the circuit
Series connection will have a equivalent resistance of
Req = R1 + R2
Req = R + ⅔ R = 5/3 R
Req = 5R / 3
Let a voltage V be connect across then, the current that flows can be calculated using ohms law
V = iR
I = V/Req
I = V / (5R /3)
I = 3V / 5R
This the current that flows in the two resistors since the same current flows in series connection
Now, using ohms law again to calculated voltage in each resistor
V= iR
For R1 = ⅔R
V1 =i•R1
V1 = 3V / 5R × 2R / 3
V1 = 3V × 2R / 5R × 3
V1 = 2V / 5
For R2 = R
V2 = i•R2
V2 = 3V / 5R × R
V2 = 3V × R / 5R
V2 = 3V / 5
Then,
Ratio of voltage 1 to voltage 2
V1 : V2 = V1 / V2 = 2V / 5 ÷ 3V / 5
V1 : V2 = 2V / 5 × 5 / 3V.
V1 : V2 =2 / 3
V1:V2 = 2:3
The ratio of their voltages is also 2:3
Jovian planets and dwarf planets like pluto are in the outer part of our solar system. so, terrestrial planets ,which means earth like planets, live in the inner part of our solar system. or B. is the answer