Answer:
Explanation:
Passion
For me, standing on the summit of Mt Everest was the result of following a process. The process of mountaineering. I love mountaineering. I am passionate about it. I love the months of planning for an expedition, the months of sweating and training to prepare my body physically. The meticulous preparation of my equipment. Most of all I love the huge mental challenge I have to overcome before each climb to confront my own fear. All these reasons are why I climb, they are why I climbed Mt Everest and that is why I continue to climb.
Passion is an enormously powerful force. It gives us the strength to get through hard times and setbacks. It gives us strength to overcome our fears, to ignore what other people think of us, to be disciplined and make sacrifices in pursuit of our dreams. Passionate people do not want to take shortcuts – they consider that ‘learning the process’ is an important part of the journey.
In mountaineering it’s easy to spot those who are not passionate about the process. They want to stand on top of the mountain but they are not really interested in the process of climbing the mountain. I feel for these people. Success without hard work is a hollow, empty feeling. They never last long in the sport.
Just as in life, successful mountaineers are the ones who are passionate. They are not there just to stand on the summit. Their passion gives them the energy to work the hardest, fight the longest, and in the words of Winston Churchill “never, never. never give-up”.
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Answer:
-414.96 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The force the ground exerts on the parachutist is -414.96 N
If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase