Tris {(hoch2)3cnh2} is one of the most common buffers used in biochemistry. a solution is prepared by adding enough tris and 12 m hcl(aq) to give 1.00 l of solution with [tris] = 0.30 m and [trish+] = 0.60 m. what is the ph of this buffered system if the pkb is 5.92?
2 answers:
<u>Given: </u>
Buffer system : Tris/TrisH+
[Tris] = 0.30 M
[TrisH+] = 0.60 M
pKb = 5.92
<u>To determine: </u>
pH of the buffer
<u>Explanation: </u>
The pH of a buffer can be obtain using the Henderson-Hasselbalch equation:
pH = pKa + log[Base]/[Acid]
In this case the conjugate base = [Tris]
Acid = [TrisH+]
Now, pKa = 14-pKa = 14-5.92 = 8.08
pH = 8.08 + log[0.30]/[0.60] = 7.778
Ans: pH of the buffer = 7.78
Given that,
The concentration of
TRIS = 0.30 M
The concentration of
TRIS+ = 0.60 M
Kb = 1.2 x 10^-6
pKb = -log Kb = - log
(1.2 x 10^-6) = 5.920
Now, by using the
Hendersonn equation,
pH = pKa + log
TRIS+/TRIS = 5.920 + log (0.60/0.30) = 6.221
<span>pOH=14-pH=14-6.221 =
7.779</span>
You might be interested in
Answer:
superstition
Explanation:
Because there is no scientific reason behind it and no connection of it to science.
Answer:
B
Explanation:
hope the picture helps you to understand:)
Answer:
H2 + I2 → 2 HI.
Explanation:
Hydrogen iodide is a diatomic gas which can be readily formed from the direct combination of the elements involved which is hydrogen and iodine. Both elements can be combined by irradiating the mixture with an electromagnetic radiation that has a wavelength which is equal to that needed to break the iodine molecule bond between the two iodine atoms
Answer:
54578 mps - 122087.51 mph
Explanation:
Answer:
Sulfur
Explanation:
Sulfur has 16 valence electrons, as shown in the diagram.