"The solubility of gases decreases as temperature rises" statements about trends in solubility is accurate.
<u>Option: D</u>
<u>Explanation:</u>
A substance's solubility is the quantity of that component that is needed at a defined degree of temperature to produce a saturated solution in any set quantity of solvent. Some compounds like hydrochloric acid, ammonia, etc have solubility that reduces with rising temperature. They are both standard-pressure gases.
When heating a solvent with a gas absorbed in it, both the solvent and the solute spike in the kinetic energy.When the gaseous solute's kinetic energy rises, the molecules have a higher propensity to overcome the solvent molecules' connection and migrate to the gas phase. Thus, a gas's solubility reduces with rising temperature.
an atom that has 18 protons, 18 neutrons and 20 neutrons. This atom has mass number of 38
mass number is calculated as number of protons + number on neutrons
therefore the mass number of the atom = 18+20= 38
Since the atom has a electronic configuration of 2.8.8,the atom cannot be negatively or positively charged because it is stable.
The atomic number of the atom is 18 since atomic number is equal to number of protons
C. <span>Regulatory proteins bind to repressor
Both produces certain proteins to break down lactose as a food source.</span>
Answer:
pH = 11.95≈12
Explanation:
Remember the reaction among aqueous acetic acid (
) and aqueous sodium hydroxide (NaOH)

First step. Need to know how much moles of the substances are present
= 0.0025 mol NaOH
0.003 mol NaOH *
/ 1 mol NaOH = 0.003 mol CH_3COOH[/tex]
NaOH is in excess. Now, how much?
0.003 mole NaOH - 0.0025 mole NaOH = 0.0005 mole NaOH
Then, that amount in excess would be responsable for the pH.
Third step. Know the pH
Remember that pH= -log[H+]
According to the dissociation of water equilibrium
Kw=[H+]*[OH-]= 10^(-14)
The dissociation of NaOH is
NaOH -> 
Now, concentration of OH^{-}[/tex] would be given for the excess of NaOH.
[OH-]= 0.0005 mole / 0.055 L = 0.00909 M
Careful: we have to use the total volumen
Les us to calculate pH
![pH= -log [H+]\\pH= -log \frac{K_w}{[OH-]} \\pH= 11.95](https://tex.z-dn.net/?f=pH%3D%20-log%20%5BH%2B%5D%5C%5CpH%3D%20-log%20%5Cfrac%7BK_w%7D%7B%5BOH-%5D%7D%20%5C%5CpH%3D%2011.95)