Answer:
2.65m/s
Explanation:
Using the equation of motion:
v² = u²+2a∆S where
v is the final velocity
u is the initial velocity
∆S is the change in distance
a is the acceleration
Given
u = 0m/s
a = 9.8m/s²
∆S = 1.3-0.943
∆S = 0.357m
Substituting the given parameters into the formula
v² = 0²+2(9.8)(0.357)
v² = 0+6.9972
v² = 6.9972
v=√6.9972
v = 2.65m/s
Hence the velocity at which it hit the ground is 2.65m/s
Based on the forces acting on the axes, the resultant moments will be (345, 400, 600 N·m)
<h3>What would be resultant moment about x-axis?</h3>
= F₃ x 3
= -115 x 3
= -345 N·m
<h3>What would be resultant moment about y-axis?</h3>
= F₁ x 2
= -200 x 2
= -400 N·m
<h3>What would be the resultant moment about z-axis?</h3>
= F₄ x 2
= -300 x 2
= - 600 N·m
In conclusion, the resultant moment about x, y, and z axes is (345, 400, 600 N·m)
Find out more on resultant moments at brainly.com/question/6278006.
They actually DO have velocity limits. There are legal restrictions on both speed and direction.
-- Speeds are limited according to the black numbers on white signs that you see on sign-posts everywhere.
-- Directions are limited by the layout of the pavement and curbs on all the highways, avenues, roads, boulevards and streets, as well as the countless signs that say "One Way", "No Left Turn", "Keep Right", "Keep Left", etc. Violate one of these, and you get nailed as sure as if you had exceeded a posted speed limit.
Answer:
materials which exhibit a spontaneous net magnetization at the atomic level, even in the absence of an external magnetic field.
Explanation:
When a material is placed within a magnetic field, the magnetic forces of the material's electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. However, materials can react quite differently to the presence of an external magnetic field. This reaction is dependent on a number of factors, such as the atomic and molecular structure of the material, and the net magnetic field associated with the atoms. The magnetic moments associated with atoms have three origins. These are the electron motion, the change in motion caused by an external magnetic field, and the spin of the electrons.