Answer:
B meet A 0.01 km east of flagpole
Explanation:
given data
distance A = 5.7 km west
velocity V1 = 8.9 km/h
distance B = 4.5 km east
velocity V2 = 7 km/h
to find out
How far runners from the flagpole, when paths cross
solution
we know A and B are 5.7 + 4.5 = 10.2 km apart
and we consider here B will run distance x km for meet
so time will be for B is
time B = distance / velocity
time B = x / 7 ...................1
and
for A distance for meet = ( 10.2 - x ) km
so time A = distance / velocity
time A = ( 10.2 - x ) / 8.9 .............2
now equating equation 1 and 2
time A = time B
x / 7 = ( 10.2 - x ) / 8.9
x = 4.490
so distance of B run for meet is 4.490 km
so distance from the flagpole when their paths cross is 4.5 - 4.490 = 0.01 km
so B meet A 0.01 km east of flagpole
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Answer:
A capacitor
Explanation:
Because it can store electric energy when disconnected from its charging circuit. Commonly used in electronic devices to maintain power supply while batteries change.
Hope this helps! :)
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him
</span>