1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
12

Ferromagnetic materials-

Physics
1 answer:
QveST [7]3 years ago
5 0

Answer:

materials which exhibit a spontaneous net magnetization at the atomic level, even in the absence of an external magnetic field.

Explanation:

When a material is placed within a magnetic field, the magnetic forces of the material's electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. However, materials can react quite differently to the presence of an external magnetic field. This reaction is dependent on a number of factors, such as the atomic and molecular structure of the material, and the net magnetic field associated with the atoms. The magnetic moments associated with atoms have three origins. These are the electron motion, the change in motion caused by an external magnetic field, and the spin of the electrons.

You might be interested in
Power is the product of_____.
tia_tia [17]
Heya user☺☺

All options are wrong here.

The correct answer is..

Work/Time.

Hope this will help☺☺
3 0
3 years ago
In general, the ________ of a simple machine is the ratio of the distance over which the force is applied to the distance over w
aksik [14]
Mechanical advantage, i hope i helped you!
3 0
3 years ago
Read 2 more answers
What includes a distance and a direction? A. Displacement B. Velocity C. Speed D. Acceleration
iren [92.7K]

hi <3

the correct option would be A. displacement. displacement is distance in a direction

hope this helps :)

7 0
3 years ago
Read 2 more answers
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
Please need help on this not too sure on this
n200080 [17]

Answer:

the last one

Explanation:

Because it is a magnifying glass, it magnifies the object and makes it bigger than it appears

3 0
3 years ago
Read 2 more answers
Other questions:
  • In a plant cell where is sunlight converted to stored energy where does photosynthesis occur
    10·2 answers
  • A girl pushes a cart with a force of 10 N. if the cart has a mass of 5 kg, what is its acceleration?
    13·1 answer
  • The process of converting a liquid to a gas is known as _____.
    12·2 answers
  • Two men, Joel and Jerry, push against a car that has stalled, trying unsuccessfully to get it moving. Jerry stops after 10 min,
    12·2 answers
  • There are two types of body waves that travel out from the epicenter of an earthquake they have unique characteristics choose ea
    5·1 answer
  • If a woman weighs 125 lb, her mass expressed in kilograms is x kg, where x is
    9·2 answers
  • Define Refraction and give some knowlegde about it
    5·1 answer
  • Kawas 200 osebanywhes he remembered he had to return some books they​
    14·1 answer
  • Compared to a 1-kg block of solid iron, a 2-kg block of solid iron has the same:
    8·1 answer
  • What's the difference between coplanar forces and resultant forces?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!