By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
density equals mass over volume for example: d=m/v, so 45.837g/1703.3414cm =
p = 0.02691 g/cm3
=11.943cm
You would have to do some conversion to get the 11.943cm
C. The object is accelerating as the direction of the object is changing
Answer:
266 g or 0.266 kg
Explanation:
The formula for specific heat capacity is given as,
Q = cm(t₂-t₁) ..................... Equation 1
Where Q = Heat Energy, c = specific heat capacity of Aluminum, m = mass of the aluminum fins, t₁ = initial temperature, t₂ = final temperature.
make m the subject of the equation,
m = Q/c(t₂-t₁)................... Equation 2
Given : Q = 2571 J, c = 0.897 J/g.°C, t₁ = 15.73 °C, t₂ = 26.50 °C.
Substitute into equation 2
m = 2571/[0.897×(26.5-15.73)]
m = 2571/9.661
m = 266 g or 0.266 kg
Hence the mass of the Aluminum fins = 266 g or 0.266 kg
Answer:
0.75%
Explanation:
Measured value of melting point of potassium thiocyanate = 174.5 °C
Actual value of melting point of potassium thiocyanate = 173.2 °C
<em>Error in the reading = |Experimental value - Theoretical value|</em>
<em>= |174.5 - 173.2|</em>
<em>= |1.3|</em>
<em>Percentage error = (Error / Theoretical value) × 100</em>
<em>= (1.3 / 173.2)×100</em>
<em>= 0.75 %</em>
∴ Percentage error in the reading is 0.75%