It changes him because it makes people want to find him now
Answer: y = 40 + 21t
Explanation:
Apply the equation of distance covered.
d = vt + C
Where d is the distance covered
v = velocity , t = time
C = constant = initial distance covered
For the case above....
d = y
y(t) = vt + C
But y(0) =40 = C
C = 40ft
velocity v = 21 ft/s
Therefore, the equation of the altitude is given by;
y(t) = 21t +40
y = 40 + 21t
We will use formula for the orbital velocity of Venus, which is v = 35.02 km/s.
An average distance to the Sun ( In kilometers ) is:
R = 0.723 * 149,579,871 km= 108,150,260 km.
Than we will calculate the orbital period ( T ).
v = 2 π R / T
T = 2 π R / v
T = 2 * 3.14 * 108,150,260 km / 126,072 km/s
T = 5389.75 s ≈ <span>224.5 days
The orbital period of Venus is approximately 224.5 days.</span>
F = m · a
In order to accelerate 82 kg upward at the rate of 3.2 m/s², a NET upward force of (82kg · 3.2m/s²) = 262.4 Newtons is required.
But if the object is on or near the surface of the Earth, then there's a downward force of (82kg · 9.8m/s²) = 803.6 N already acting on it because of gravity.
So you need to apply (803.6N + 262.4N) = <em>1,066 Newtons UPward</em>, in order to cancel its own weight and accelerate it upward at that rate.