You should have drawn1 - x-axis and y-axis in light pencil.2 - graphed a down-facing parabola with the top of the frown on the y-axis at y = 2. It should be crossing the x-axis at ±√2. This should be in dark pencil or another color.3 - In dark pencil or a completely new color, draw a rectangle with one of the horizontal sides sitting on top of the x-axis and the other horizontal side touching the parabola at each of the top corners of the rectangle. The rectangle will have half of its base in the positive x-axis and the other half on the negative x-axis. It should be split right down the middle by the y-axis. So each half of the base we will say is "x" units long. So the whole base is 2x units long (the x units to the right of the y-axis, and the x units to the left of the y-axis) I so wish I could draw you this picture... In the vertical direction, both vertical edges are the same length and we will call that y. The area that we want to maximize has a width 2x long, and a height of y tall. So A = 2xy This is the equation we want to maximize (take derivative and set it = 0), we call it the "primary equation", but we need it in one variable. This is where the "secondary equation" comes in. We need to find a way to change the area formula to all x's or all y's. Since it is constrained to having its height limited by the parabola, we could use the fact that y=2 - x2 to make the area formula in only x's. Substitute in place of the "y", "2 - x2" into the area formula. A = 2xy = 2x(2 - x2) then simplify A = 4x - 2x3 NOW you are ready to take the deriv and set it = 0 dA/dx = 4 - 6x2 0 = 4 - 6x2 6x2 = 4 x2 = 4/6 or 2/3 So x = ±√(2/3) Width remember was 2x. So the width is 2[√(2/3)]Height is y which is 2 - x2 = 2 - 2/3 =4/3
Answer:
p-value = 0.1277
Step-by-step explanation:
p-value is the probability value tell us how likely it is to get a result like this if the Null Hypothesis is true.
Firstly we find the mean and standard deviation of the given data set.
⇒ Mean = 
⇒ Mean = 4.368

where,
is mean of the distribution.
⇒ Standard Deviation = 0.034
Applying t- test:
Let out hypothesis is:
H₀: μ = 4.35
H₁: μ ≠ 4.35
Now,
Here, μ = Population Mean = 4.35
= Sample Mean = 4.368
σ = Standard Deviation = 0.034
n = 10

Putting all values we get, t = 1.6777 with (10 -1) = 9 degree of freedom.
Then the p-value at 99% level of significance.
⇒ p-value = 0.1277
Two circles<span> of </span>radius<span> 4 are </span>tangent<span> to the </span>graph<span> of y^</span>2<span> = </span>4x<span> at the </span>point<span> (</span>1<span>, </span>2<span>). ... I know how to </span>find<span> the </span>tangent<span> line from a circle and a given </span>point<span>, but ... </span>2a2=42. a2=8. a=±2√2. Then1−xc=±2√2<span> and </span>2−yc=±2√2. ... 4 from (1,2<span>), so you could </span>find these<span> centers, and from there the</span>equations<span> of the circle
</span>