F⃗ (x,y)=−yi⃗ +xj⃗ f→(x,y)=−yi→+xj→ and cc is the line segment from point p=(5,0)p=(5,0) to q=(0,2)q=(0,2). (a) find a vector pa
rametric equation r⃗ (t)r→(t) for the line segment cc so that points pp and qq correspond to t=0t=0 and t=1t=1, respectively. r⃗ (t)=r→(t)= (b) using the parametrization in part (a), the line integral of f⃗ f→ along cc is ∫cf⃗ ⋅dr⃗ =∫baf⃗ (r⃗ (t))⋅r⃗ ′(t)dt=∫ba∫cf→⋅dr→=∫abf→(r→(t))⋅r→′(t)dt=∫ab dtdt with limits of integration a=a= and b=b= (c) evaluate the line integral in part (b). (d) what is the line integral of f⃗ f→ around the clockwise-oriented triangle with corners at the origin, pp, and qq? hint: sketch the vector field and the triangle.
By Green's theorem, the line integral is equivalent to
where is the triangle bounded by , and this integral is simply twice the area of . is a right triangle with legs 2 and 5, so its area is 5 and the integral's value is 10.