1) Data:
Vo = 20 m/s
α = 37°
Yo = 0
Y = 3m
2) Questions: V at Y = 3m and X at Y = 3 m
3) Calculate components of the initial velocity
Vox = Vo * cos(37°) = 15.97 m/s
Voy = Vo * sin(37°) = 12.04 m/s
4) Formulas
Vx = constant = 15.97 m/s
X = Vx * t
Vy = Voy - g*t
Y = Yo + Voy * t - g (t^2) / 2
5) Calculate t when Y = 3m (first time)
Use g ≈ 9.8 m/s^2
3 = 12.04 * t - 4.9 t^2
=> 4.9 t^2 - 12.04t + 3 = 0
Use the quadratic equation to solve the equation
=> t = 0.28 s and t = 2.18s
First time => t = 0.28 s.
6) Calculate Vy when t = 0.28 s
Vy = 12.04 m/s - 9.8 * 0.28s = 9.3 m/s
7) Calculate V:
V = √ [ (Vx)^2 + (Vy)^2 ] = √[ (15.97m/s)^2 + (9.30 m/s)^2 ] = 18.48 m/s
tan(β) = Vy/Vx = 9.30 / 15.97 ≈ 0.582 => β ≈ arctan(0.582) ≈ 30°
Answer: V ≈ 18.5 m/s, with angle ≈ 30°
8) Calculate X at t = 0.28s
X = Vx * t = 15.97 m/s * 0.28s = 4,47m ≈ 4,5m
Answer: X ≈ 4,5 m
Lowkey never watched naruto yet not even gonna lie
Both the butterfly and the large car will have equal forces but in opposite direction.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that action and reaction are equal and opposite. That is, the force exerted on an object is equal to the reaction experienced by the object.
Fa = - Fb
where;
- Fa is the force exerted by the large car
- Fb is the force of the butterfly
Thus, both the butterfly and the large car will have equal forces but in opposite direction.
Learn more about Newton's third law of motion here: brainly.com/question/25998091
#SPJ1