Answer:
The distance of separation is decreased
Explanation:
From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.
The most important characteristics that are exhibited by metals are-
1- Metals are ductile
2-Most metals are conductive in nature.
3-Most metals are malleable.
4- Metals have strong inter molecular force of attraction between the.
5-Metals have luster.
6-Metals are sonorous.
Here we are given Tungsten filament.
Tungsten is a metal.So it must be conductive and as well as ductile in nature.
The electric filament that we are using in our electric bulb glows due to the heating effect of current.Hence the chosen substances for glowing electric bulb must have high melting point.
The melting point of tungsten is 1650 degree celsius which is very high.That's why it is used in electric bulb.
Hence the correct answer to the question is the third one i.e Tungsten is ductile,has a high melting point, and is electrically conductive.
The correct answer is “C” ultrasound. Hope this helps!
Lenz's Law: The polarity of the induced emf is such that it produces a current whose magnetic field opposes the change in magnetic flux through the loop.
Explanation:
Formula for steady flow energy equation for the flow of fluid is as follows.
![m[h_{1} + \frac{V^{2}_{1}}{2}] + z_{1}g] + q = m[h_{1} + \frac{V^{2}_{1}}{2} + z_{1}g] + w](https://tex.z-dn.net/?f=m%5Bh_%7B1%7D%20%2B%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2%7D%5D%20%2B%20z_%7B1%7Dg%5D%20%2B%20q%20%3D%20m%5Bh_%7B1%7D%20%2B%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2%7D%20%2B%20z_%7B1%7Dg%5D%20%2B%20w)
Now, we will substitute 0 for both
and
, 0 for w, 334.9 kJ/kg for
, 2726.5 kJ/kg for
, 5 m/s for
and 220 m/s for
.
Putting the given values into the above formula as follows.
![1 \times [334.9 \times 10^{3} J/kg + \frac{(5 m/s)^{2}}{2} + 0] + q = 1 \times [2726.5 \times 10^{3} + \frac{(220 m/s)^{2}}{2} + 0] + 0](https://tex.z-dn.net/?f=1%20%5Ctimes%20%5B334.9%20%5Ctimes%2010%5E%7B3%7D%20J%2Fkg%20%2B%20%5Cfrac%7B%285%20m%2Fs%29%5E%7B2%7D%7D%7B2%7D%20%2B%200%5D%20%2B%20q%20%3D%201%20%5Ctimes%20%5B2726.5%20%5Ctimes%2010%5E%7B3%7D%20%2B%20%5Cfrac%7B%28220%20m%2Fs%29%5E%7B2%7D%7D%7B2%7D%20%2B%200%5D%20%2B%200)
q = 6597.711 kJ
Thus, we can conclude that heat transferred through the coil per unit mass of water is 6597.711 kJ.