1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinil7 [7]
2 years ago
5

When a chemical reaction occurs,

Physics
1 answer:
mel-nik [20]2 years ago
3 0
A) reactants interact to form products with different chemical and physical properties
You might be interested in
A 4 kg bowling ball moving at 1.4 m/s east impacts a 400 g pin that is stationary. After the impact, the ball is moving at 0.5 m
nignag [31]

The speed of the pin after the elastic collision is 9 m/s east.

<h3>Final speed of the pin</h3>

The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;

m1u1 + mu2 = m1v1 + m2v2

where;

  • m is the mass of the objects
  • u is the initial speed of the objects
  • v is the final speed of the objects

4(1.4) + 0.4(0) = 4(0.5) + 0.4v2

5.6 = 2 + 0.4v2

5.6 - 2 = 0.4v2

3.6 = 0.4v2

v2 = 3.6/0.4

v2 = 9 m/s

Thus, The speed of the pin after the elastic collision is 9 m/s east.

Learn more about linear momentum here: brainly.com/question/7538238

#SPJ1

3 0
1 year ago
A radio wave has a frequency of 5.5 × 104 hertz and travels at a speed of 3.0 × 108 meters/second. What is its wavelength
Ne4ueva [31]
Use v=fλ
3x10^8=5.5x 10^4 λ
λ=5.45x10^3m
4 0
3 years ago
Read 2 more answers
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400mm wide. The diffraction pattern is observed
kogti [31]

Answer:

a)y_{first}=5.3mm

b)y_{second}=10.6-5.3 =5.3 mm  

Explanation:

a)

The width of the central bright in this diffraction pattern is given by:

y=\frac{m\lambda D}{a} when m is a natural number.

here:

  • m is 1 (to find the central bright fringe)                
  • D is the distance from the slit to the screen
  • a is the slit wide
  • λ is the wavelength

So we have:

y_{first}=\frac{633*10^{9}*3.35}{0.0004}

y_{first}=5.3mm

b)

Now, if we do m=2 we can find the distance to the second minima.

y_{2}=\frac{2*633*10^{9}*3.35}{0.0004}

y_{2}=10.6 mm

Now we need to subtract these distance, to get the width of the first bright fringe :

y_{second}=10.6-5.3 =5.3 mm    

I hope it heps you!

     

4 0
2 years ago
Same diagram... Which location shows SUMMER in the SOUTHERN hemisphere? *
LiRa [457]
Location 1 is correct
7 0
3 years ago
Read 2 more answers
You release a block from the top of a long, slippery inclined plane of length l that makes an angle θ with the horizontal. The m
Alecsey [184]

Answer:

UG (x) = m*g*x*sin(Q)

Vx,f (x)= sqrt (2*g*x*sin(Q))

Explanation:

Given:

- The length of the friction less surface L

- The angle Q is made with horizontal

- UG ( x = L ) = 0

- UK ( x = 0) = 0

Find:

derive an expression for the potential energy of the block-Earth system as a function of x.

determine the speed of the block at the bottom of the incline.

Solution:

- We know that the gravitational potential of an object relative to datum is given by:

                                   UG = m*g*y

Where,

m is the mass of the object

g is the gravitational acceleration constant

y is the vertical distance from datum to the current position.

- We will consider a right angle triangle with hypotenuse x and angle Q with the base and y as the height. The relation between each variable can be given according to Pythagoras theorem as follows:

                                      y = x*sin(Q)

- Substitute the above relationship in the expression for UG as follows:

                                      UG = m*g*x*sin(Q)

- To formulate an expression of velocity at the bottom we can use an energy balance or law of conservation of energy on the block:

                                      UG = UK

- Where UK is kinetic energy given by:

                                      UK = 0.5*m*Vx,f^2

Where Vx,f is the final velocity of the object @ x:

                                     m*g*x*sin(Q) = 0.5*m*Vx,f^2

-Simplify and solve for Vx,f:

                                    Vx,f^2 = 2*g*x*sin(Q)

Hence, Velocity is given by:

                                     Vx,f = sqrt (2*g*x*sin(Q))

8 0
2 years ago
Other questions:
  • Dan is gliding on his skateboard at 4.00m/s . He suddenly jumps backward off the skateboard, kicking the skateboard forward at 6
    7·1 answer
  • What statement best defines a universal law A. it is in effect at all times B. It operates only under specific conditions C. It
    11·2 answers
  • What is an odometer?
    6·2 answers
  • What is wind energy?
    14·1 answer
  • While John is traveling along a straight interstate highway, he notices that the mile marker reads 239 km. John travels until he
    5·1 answer
  • Has anyone ever done the model of an atom lab?
    8·2 answers
  • Which of the following would most likely produce the strongest magnetic
    10·1 answer
  • A 2:2 kg toy train is con ned to roll along a straight, frictionless track parallel to the x-axis. The train starts at the origi
    12·1 answer
  • How long does it take for a bicycle traveling 7.0 m/s to come to a stop if the
    12·2 answers
  • A snake slithered across the sidewalk in between two sign posts. At the first sign post his speed was
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!