1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
10

Scientists use this part of the electromagnetic spectrum to diagnose broken bones.

Physics
2 answers:
lesantik [10]3 years ago
7 0
They use x-rays to diagnose broken bones
Volgvan3 years ago
6 0

Answer:

X-Rays

Explanation:

X-Rays are most widely used to diagnose broken bones without making an incision in the body. X Rays are part of the EM spectrum having a wave length in the range of 0.01 to 10 nanometers. They have a property of traversing through thick objects without being much absorbed or scattered, thus making it very useful for such procedure.

You might be interested in
A manufacturer selected a metal to use in producing a lightweight button for clothing. A metal that has a density of 2.71 g/cm3
Natali5045456 [20]

Just find the density of every metal and select the one with a density of 2.71 g/cm³ . This is:

Metal 1

ρ = m/V

ρ = 22.1 g / 3 cm³

ρ = 7.367 g / cm³

Metal 2

ρ = m/V

ρ = 42 g / 4 cm³

ρ = 10.5 g / cm³

Metal 3

ρ = m/V

ρ = 9.32 g / 5 cm³

ρ = 1.864 g / cm³

Metal 4

ρ = m/V

ρ = 8.13 g / 3 cm³

ρ = 2.71 g / cm³

<h2>R / Metal 4 was selected.</h2>
4 0
2 years ago
Consider 3.5 kg of austenite containing 0.95 wt% c and cooled to below 727°c (1341°f). (a) what is the proeutectoid phase? (b) h
vladimir2022 [97]
A. The proeutectoid phase is Fe₃c because 0.95 wt/c  is greater than the eutectoid composition which is 0.76 wt/c

b.  We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is 
(0.14) × (3.5kg) = 0.49kg

c.  We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to 
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
4 0
3 years ago
What happens to light waves from a star as the star moves away from Earth?
AURORKA [14]
<h2>Answer: Light waves have a redshift due to the Doppler effect </h2>

The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.  

From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect. </u>

This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.  For example, as a star moves away from the Earth, its espectrum turns towards the red.

8 0
3 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
3 years ago
The pitch of a sound wave is its _________. <br> A.speed B.amplitude C.frequency D.wavelength
Artyom0805 [142]
Hi there my friend :)


Your answer is C. frequency


Hope this helps :)

-xxAnsxx-
8 0
2 years ago
Other questions:
  • 9) At a construction site, a small crane is raising two boxes of nails on a plank to the roof. One box has already been opened a
    12·2 answers
  • Nuclei of u-238 atoms are
    10·1 answer
  • The police department is excited to have some new motorcycle units. One officer said that these motorcycles can go from 0 miles
    12·1 answer
  • an object moving with uniform acceleration has a velocity of 12.ocm/s. if its x coordinate 2.00 later is 25.00cm what is its acc
    7·1 answer
  • What is a wave period?
    10·1 answer
  • A golfer tees off and hits a golf ball at a speed of 31 m/s and at an angle of 35 degrees. What is the horizontal velocity compo
    5·1 answer
  • A 110 V power line is protected by a 15 A fuse. What is the maximum number of 400 W lamps that can be simultaneously operated in
    15·1 answer
  • Find the mass of a flying discus that has a net force of 1.05 newtons and accelerates at 3.5 m/s^2
    5·1 answer
  • A small aircraft is headed due south with a speed of 57.7 m/s with respect to still air. Then, for 8.77 x 102 s a wind blows the
    10·1 answer
  • A large blue marble of mass 3.5 g is moving to the right with a velocity of 15 cm/s. The large marble hits a small red marble of
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!